A supercomputer is a computer at the frontline of current processing capacity, particularly speed of calculation. Supercomputers were introduced in the 1960s and were designed primarily by Seymour Cray at Control Data Corporation (CDC), and later at Cray Research. While the supercomputers of the 1970s used only a few processors, in the 1990s, machines with thousands of processors began to appear and by the end of the 20th century, massively parallel supercomputers with tens of thousands of “off-the-shelf” processors were the norm.
Systems with a massive number of processors generally take one of two paths: in one approach, e.g. in grid computing the processing power of a large number of computers in distributed, diverse administrative domains, is opportunistically used whenever a computer is available.[4] In another approach, a large number of processors are used in close proximity to each other, e.g. in a computer cluster. The use of multi-core processors combined with centralization is an emerging direction.[5][6] Currently, Japan’s K computer (a cluster) is the fastest in the world.[7]
Supercomputers are used for highly calculation-intensive tasks such as problems including quantum physics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulation of airplanes in wind tunnels, simulation of the detonation of nuclear weapons, and research into nuclear fusion).

History of supercomputing

A Cray-1 preserved at the Deutsches Museum

The history of supercomputing goes back to the 1960s when a series of computers at Control Data Corporation (CDC) were designed by Seymour Cray to use innovative designs and parallelism to achieve superior computational peak performance. The CDC 6600, released in 1964, is generally considered the first supercomputer.
Cray left CDC in 1972 to form his own company. Four years after leaving CDC, Cray delivered the 80 MHz Cray 1 in 1976, and it became one of the most successful supercomputers in history. The Cray-2 released in 1985 was an 8 processor liquid cooled computer and Fluorinert was pumped through it as it operated. It performed at 1.9 gigaflops and was the world’s fastest until 1990.
While the supercomputers of the 1980s used only a few processors, in the 1990s, machines with thousands of processors began to appear both in the United States and in Japan, setting new computational performance records. Fujitsu’s Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 gigaflops per processor.[15][16] The Hitachi SR2201 obtained a peak performance of 600 gigaflops in 1996 by using 2048 processors connected via a fast three dimensional crossbar network. The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations, and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two dimensional mesh, allowing processes to execute on separate nodes; communicating via the Message Passing Interface
Hardware and architecture
Supercomputer architecture and Parallel computer hardware

A Blue Gene/L cabinet showing the stacked blades, each holding many processors

Approaches to supercomputer architecture have taken dramatic turns since the earliest systems were introduced in the 1960s. Early supercomputer architectures pioneered by Seymour Cray relied on compact innovative designs and local parallelism to achieve superior computational peak performance.[8] However, in time the demand for increased computational power ushered in the age of massively parallel systems.
While the supercomputers of the 1970s used only a few processors, in the 1990s, machines with thousands of processors began to appear and by the end of the 20th century, massively parallel supercomputers with tens of thousands of “off-the-shelf” processors were the norm. Supercomputers of the 21st century can use over 100,000 processors (some being graphic units) connected by fast connections.
Throughout the decades, the management of heat density has remained a key issue for most centralized supercomputers. The large amount of heat generated by a system may also have other effects, e.g. reducing the lifetime of other system components. There have been diverse approaches to heat management, from pumping Fluorinert through the system, to a hybrid liquid-air cooling system or air cooling with normal air conditioning temperatures.

The CPU share of TOP500
Systems with a massive number of processors generally take one of two paths: in one approach, e.g. in grid computing the processing power of a large number of computers in distributed, diverse administrative domains, is opportunistically used whenever a computer is available.[4] In another approach, a large number of processors are used in close proximity to each other, e.g. in a computer cluster. In such a centralized massively parallel system the speed and flexibility of the interconnect becomes very important and modern supercomputers have used various approaches ranging from enhanced Infiniband systems to three-dimensional torus interconnects. The use of multi-core processors combined with centralization is an emerging direction, e.g. as in the Cyclops64 system.

As the price/performance of general purpose graphic processors (GPGPUs) has improved, a number of petaflop supercomputers such as Tianhe-I and Nebulae have started to rely on them. However, other systems such as the K computer continue to use conventional processors such as SPARC-based designs and the overall applicability of GPGPUs in general purpose high performance computing applications has been the subject of debate, in that while a GPGPU maybe tuned to score well on specific benchmarks its overall applicability to everyday algorithms may be limited unless significant effort is spent to tune the application towards it.] However, GPUs are gaining ground and in 2012 the Jaguar supercomputer was transformed into Titan by replacing CPUs with GPUs.
A number of “special-purpose” systems have been designed, dedicated to a single problem. This allows the use of specially programmed FPGA chips or even custom VLSI chips, allowing higher price/performance ratios by sacrificing generality. Examples of special-purpose supercomputers include Belle, Deep Blue, and Hydra, for playing chess, Gravity Pipe for astrophysics,] MDGRAPE-3 for protein structure computation molecular dynamics and Deep Crack,] for breaking the DES cipher.
Energy usage and heat management
A typical supercomputer consumes large amounts of electrical power, almost all of which is converted into heat, requiring cooling. For example, Tianhe-1A consumes 4.04 Megawatts of electricity.[39] The cost to power and cool the system can be significant, e.g. 4MW at $0.10/KWh is $400 an hour or about $3.5 million per year.

An IBM HS20 blade
Heat management is a major issue in complex electronic devices, and affects powerful computer systems in various ways. The thermal design power and CPU power dissipation issues in supercomputing surpass those of traditional computer cooling technologies. The supercomputing awards for green computing reflect this issue.
The packing of thousands of processors together inevitably generates significant amounts of heat density that need to be dealt with. The Cray 2 was liquid cooled, and used a Fluorinert “cooling waterfall” which was forced through the modules under pressure.[14] However, the submerged liquid cooling approach was not practical for the multi-cabinet systems based on off-the-shelf processors, and in System X a special cooling system that combined air conditioning with liquid cooling was developed in conjunction with the Liebert company.
In the Blue Gene system IBM deliberately used low power processors to deal with heat density. On the other hand, the IBM Power 775, released in 2011, has closely packed elements that require water cooling. The IBM Aquasar system, on the other hand uses hot water cooling to achieve energy efficiency, the water being used to heat buildings as well.
The energy efficiency of computer systems is generally measured in terms of “FLOPS per Watt”. In 2008 IBM’s Roadrunner operated at 376 MFLOPS/Watt. In November 2010, the Blue Gene/Q reached 1684 MFLOPS/Watt. In June 2011 the top 2 spots on the Green 500 list were occupied by Blue Gene machines in New York (one achieving 2097 MFLOPS/W) with the DEGIMA cluster in Nagasaki placing third with 1375 MFLOPS/W.
Software and system management

The Jaguar XT5 supercomputer at Oak Ridge National Labs
Since the end of the 20th century, supercomputer operating systems have undergone major transformations, as sea changes have taken place in supercomputer architecture. While early operating systems were custom tailored to each supercomputer to gain speed, the trend has been to move away from in-house operating systems to the adaptation of generic software such as Linux.
Given that modern massively parallel supercomputers typically separate computations from other services by using multiple types of nodes, they usually run different operating systems on different nodes, e.g. using a small and efficient lightweight kernel such as CNK or CNL on compute nodes, but a larger system such as a Linux-derivative on server and I/O nodes.

While in a traditional multi-user computer system job scheduling is in effect a tasking problem for processing and peripheral resources, in a massively parallel system, the job management system needs to manage the allocation of both computational and communication resources, as well as gracefully dealing with inevitable hardware failures when tens of thousands of processors are present.
Although most modern supercomputers use the Linux operating system, each manufacturer has made its own specific changes to the Linux-derivative they use, and no industry standard exists, partly due to the fact that the differences in hardware architectures require changes to optimize the operating system to each hardware design.
Software tools
The parallel architectures of supercomputers often dictate the use of special programming techniques to exploit their speed.
In the most common scenario, environments such as PVM and MPI for loosely connected clusters and OpenMP for tightly coordinated shared memory machines are used. Significant effort is required to optimize an algorithm for the interconnect characteristics of the machine it will be run on; the aim is to prevent any of the CPUs from wasting time waiting on data from other nodes. GPGPUs have hundreds of processor cores and are programmed using programming models such as CUDA.
Software tools for distributed processing include standard APIs such as MPI and PVM, VTL, and open source-based software solutions such as Beowulf.
Distributed supercomputing

Example architecture of a grid computing system connecting many personal computers over the internet

Opportunistic Supercomputing is a form of networked grid computing whereby a “super virtual computer” of many loosely coupled volunteer computing machines performs very large computing tasks. Grid computing has been applied to a number of large-scale embarrassingly parallel problems that require supercomputing performance scales. However, basic grid and cloud computing approaches that rely on volunteer computing can not handle traditional supercomputing tasks such as fluid dynamic simulations.
The fastest grid computing system is the distributed computing project Folding@home. F@h reported 8.1 petaflops of x86 processing power as of March 2012. Of this, 5.8 petaflops are contributed by clients running on various GPUs, 1.7 petaflops come from PlayStation 3 systems, and the rest from various CPU systems.
The BOINC platform hosts a number of distributed computing projects. As of May 2011, BOINC recorded a processing power of over 5.5 petaflops through over 480,000 active computers on the network.The most active project (measured by computational power), MilkyWay@home, reports processing power of over 700 teraflops through over 33,000 active computers.[
As of May 2011, GIMPS’s distributed Mersenne Prime search currently achieves about 60 teraflops through over 25,000 registered computers. The Internet PrimeNet Server supports GIMPS’s grid computing approach, one of the earliest and most successful grid computing projects, since 1997.
Quasi-opportunistic approaches
Quasi-opportunistic Supercomputing is a form of distributed computing whereby the “super virtual computer” of a large number of networked geographically disperse computers performs huge processing power demanding computing tasks.Quasi-opportunistic supercomputing aims to provide a higher quality of service than opportunistic grid computing by achieving more control over the assignment of tasks to distributed resources and the use of intelligence about the availability and reliability of individual systems within the supercomputing network. However, quasi-opportunistic distributed execution of demanding parallel computing software in grids should be achieved through implementation of grid-wise allocation agreements, co-allocation subsystems, communication topology-aware allocation mechanisms, fault tolerant message passing libraries and data pre-conditioning.

Performance measurement
Capability vs capacity
Supercomputers generally aim for the maximum in capability computing rather than capacity computing. Capability computing is typically thought of as using the maximum computing power to solve a single large problem in the shortest amount of time. Often a capability system is able to solve a problem of a size or complexity that no other computer can, e.g. a very complex weather simulation application.
Capacity computing in contrast is typically thought of as using efficient cost-effective computing power to solve a small number of somewhat large problems or a large number of small problems, e.g. many user access requests to a database or a web site.
Architectures that lend themselves to supporting many users for routine everyday tasks may have a lot of capacity but are not typically considered supercomputers, given that they do not solve a single very complex problem.
Performance metrics

Top supercomputer speeds: logscale speed over 60 years
In general, the speed of supercomputers is measured and benchmarked in “FLOPS” (FLoating Point Operations Per Second), and not in terms of MIPS, i.e. as “instructions per second”, as is the case with general purpose computers. These measuremens are commonly used with an SI prefix such as tera-, combined into the shorthand “TFLOPS” (1012 FLOPS, pronounced teraflops), or peta-, combined into the shorthand “PFLOPS” (1015 FLOPS, pronounced petaflops.) “Petascale” supercomputers can process one quadrillion (1015) (1000 trillion) FLOPS. Exascale is computing performance in the exaflops range. An exaflop is one quintillion (1018) FLOPS (one million teraflops).

No single number can reflect the overall performance of a computer system, yet the goal of the Linpack benchmark is to approximate how fast the computer solves numerical problems and it is widely used in the industry. The FLOPS measurement is either quoted based on the theoretical floating point performance of a processor (derived from manufacturer’s processor specifications and shown as “Rpeak” in the TOP500 lists) which is generally unachievable when running real workloads, or the achievable throughput, derived from the LINPACK benchmarks and shown as “Rmax” in the TOP500 list. The LINPACK benchmark typically performs LU decomposition of a large matrix. The LINPACK performance gives some indication of performance for some real-world problems, but does not necessarily match the processing requirements of many other supercomputer workloads, which for example may require more memory bandwidth, or may require better integer computing performance, or may need a high performance I/O system to achieve high levels of performance.
The TOP500 list

14 countries account for the vast majority of the world’s 500 fastest supercomputers, with over half being located in the United States.
Since 1993, the fastest supercomputers have been ranked on the TOP500 list according to their LINPACK benchmark results. The list does not claim to be unbiased or definitive, but it is a widely cited current definition of the “fastest” supercomputer available at any given time.
This is a recent list of the computers which appeared at the top of the Top500 list, and the “Peak speed” is given as the “Rmax” rating.

Year Supercomputer Peak speed
2008 IBM Roadrunner
1.026 PFLOPS New Mexico, USA

1.105 PFLOPS
2009 Cray Jaguar
1.759 PFLOPS Oak Ridge, USA

2010 Tianhe-IA
2.566 PFLOPS Tianjin, China

2011 Fujitsu K computer
10.51 PFLOPS Kobe, Japan

The K computer is the worlds fastest supercomputer at 10.51 petaflops. It consists of 88,000 SPARC64 VIIIfx CPUs, and spans 864 server racks. In November 2011, the power consumption was reported to be 12659.89 kW. The operating costs for the system are about $10M per year.
Applications of supercomputers
The stages of supercomputer application may be summarized in the following table:
Decade Uses and computer involved
1970s Weather forecasting, aerodynamic research (Cray-1).

1980s Probabilistic analysis,[72] radiation shielding modeling. (CDC Cyber).

1990s Brute force code breaking (EFF DES cracker),
3D nuclear test simulations as a substitute for legal conduct Nuclear Proliferation Treaty (ASCI Q).

2010s Molecular Dynamics Simulation (Tianhe-1A)

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s